# Эволюция методов молекулярной диагностики хронического миелолейкоза

А.В. Мисюрин



1960 год: Ph-хромосома

A Minute Chromosome in Human Chronic Granulocytic Leukemia

P.C. Nowell, D.A. Hungerford

University of Pennsylvania, **Philadelphia** 

### A Minute Chromosome in Human Chronic Granulocytic Leukemia

In seven cases thus far investigated (five males, two females), a minute chromosome has been observed replacing one of the four smallest autosomes in the chromosome complement of cells of chronic granulocytic leukemia cultured from peripheral blood. No abnormality was observed in the cells of four cases of ocute granulocytic leukemia in adults or of six cases of acute leukemia in children. There have been several recent reports of chromosome abnormalities in a number of cases of human leukemia fineluding two of the seven cases reported here: Nowell and Hungerford, J. Natl. Cancer Inst. 25, 85 (1960)], but no series has appeared in which there was a consistent change typical of a particular type of leukemia.

Cells of the five new cases were obtained from peripheral blood (and bone marrow in one instance), grown in culture for 24-72 hours, and processed for cytological examination by a recently developed air-drying technique (Moorhead, et al., Exptl. Cell Research, in press). The patients varied from asymptomatic untreated cases to extensively treated

eases of several years duration in terminal myeloblastic crisis. All seven individuals showed a similar minute chromosome, and none showed any other frequent or regular chromosome change. In most of the cases, cells with normal chromosomes were also observed. Thus, the minute is not a part of the normal chromosome constitution of such individuals.

The findings suggest a causal relationship between the chromosome abnormality observed and chronic granulocytic leukemia.

PETER C. NOWELL

School of Medicine, University of Pennsylvania

DAVID A. HUNGERFORD

Institute for Cancer Research

Nowell & Hungerford, 1960 Science 132.1497

# 1973: translocation of chromosomal material



National Medal of Science

Rowley JD: A new consistent chromosomal abnormality in chronic myelogenousleukemia identified by quinacrinefluorescence and Giemsastaining. Nature, 243, 290-293, 1973

...suggesting that there may be a hitherto undetected translocation between the long arm of 22and the long arm of 9, producing the 9q+ chromosome...

# (Качество диагностики) U (Эффективность терапии)

1960 - открыли Филадельфийскую хромосому

(Nowell P., Hungerford D.)

1973 - Ph-хромосома - результат транслокации t(9;22)

(Rowley JD)

1983 - ген abl вовлечен в транслокацию t(9;22)

(Bartram CR, de Klein A)

1984 - изучена область BCR 22 хромосомы

(Groffen J, Stephenson J, Heisterkamp N)

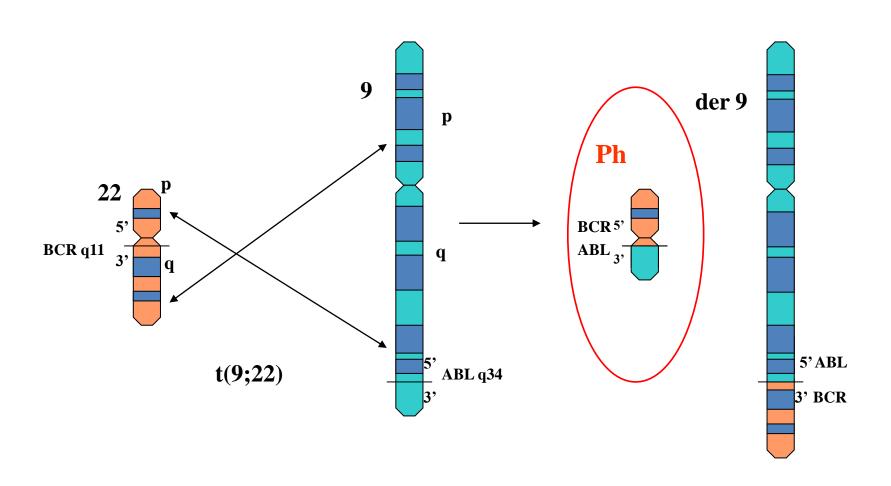
1990 - bcr-abl - онкогенная тирозинкиназа

(Lugo TG, Pendergast AM)

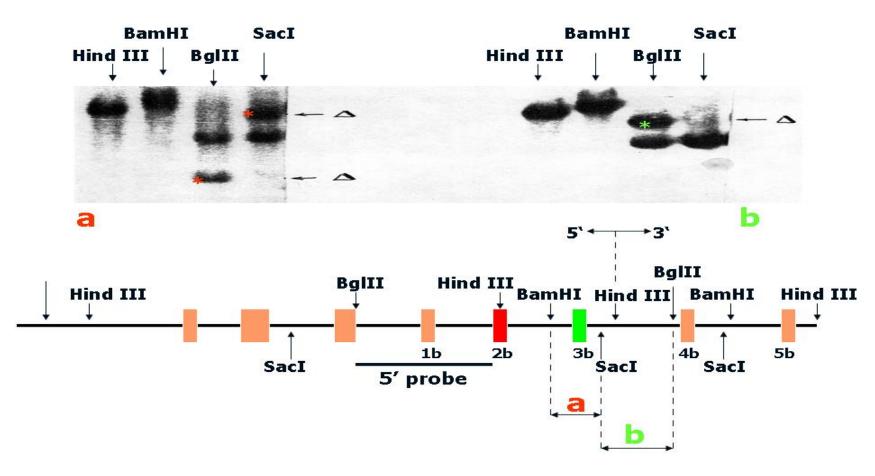
1990 - индукция ХМЛ у мышей геном p210 bcr-abl из Ph

(Daley G, Van Etten R)

1995/7 - STI571 (иматиниб) ингибитор тирозинкиназы bcr-abl


(David Baltimore, Owen N. Witte, Alex Matter, Nicholas B. Lydon, Brian J. Druker

2004 – резистеность к иматинибу преодолена при помощи дазатиниба


(Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL.



# Транслокация t(9;22)



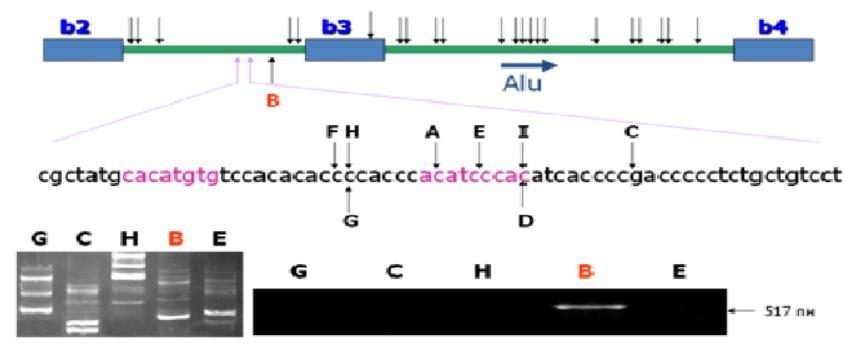
# Анализ перестроек гена BCR/ABL методом гибридизации по Саузерну





#### ПИСЬМА РЕДАКТОРУ

УДК 577.215.037


#### НОВЫЕ ТОЧКИ РАЗРЫВА ТРАНСЛОКАЦИИ t(9;22) ПРИ ХРОНИЧЕСКОМ МИЕЛОЛЕЙКОЗЕ

© 1999 г. А. В. Мисюрин#, В. Л. Сурин, А. Ф. Тагиев

Гематологический научный центр РАМН, 125167, Москва, Новозыковский пр., 4а Поступило в редакцию 18.03.98 г. Принято к печати 05.10.98 г.

Изучено 9 новых точек разрыва (участков слияния) генов *BCR* и *ABL* в составе химерного онкогена *BCR/ABL* при транслокации t(9;22) у больных хроническим миелолейкозом. Впервые обнаружены совпадающие точки разрыва у разных больных в генах *BCR* и *ABL*. Фрагменты ДНК, содержавшие точки разрыва *BCR/ABL*, были амплифицированы при помощи ПЦР-прогулки на основе модификации метода ПЦР со случайным отжигом праймеров, названной обратной праймерной прогулкой.

Ключевые слова: t(9;22); точки разрыва; хронический миелолейкоз; ПЦР-прогулка.





www.nature.com/leu

#### ORIGINAL ARTICLE

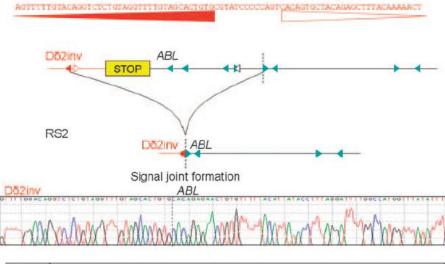
### Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation

J Score<sup>1</sup>, MJ Calasanz<sup>2</sup>, O Ottman<sup>3</sup>, F Pane<sup>4,5</sup>, RF Yeh<sup>6</sup>, MA Sobrinho-Simões<sup>7</sup>, S Kreil<sup>1</sup>, D Ward<sup>1</sup>, C Hidalgo-Curtis<sup>1</sup>, JV Melo<sup>7</sup>, J Wiemels<sup>6</sup>, B Nadel<sup>8</sup>, NCP Cross<sup>1,9</sup> and FH Grand<sup>1,9</sup>

<sup>1</sup>Wessex Regional Genetics Laboratory, Salisbury and Human Genetics Division, University of Southampton School of Medicine, Southampton, UK; <sup>2</sup>Department of Genetics, School of Science, University of Navarra, Pamplona, Spain; <sup>3</sup>Department of Hematology and Oncology, Goethe University, Frankfurt, Germany; <sup>4</sup>Division of Hematology, University of Naples Federico II, Naples, Italy; <sup>5</sup>CEINGE—Biotecnologie Avanzate, Naples, Italy; <sup>6</sup>Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, USA; <sup>7</sup>Department of Haematology, Hammersmith Hospital, Du Cane Road,

Imperial College, London, UK and <sup>8</sup>Centre d'Immunologie de M

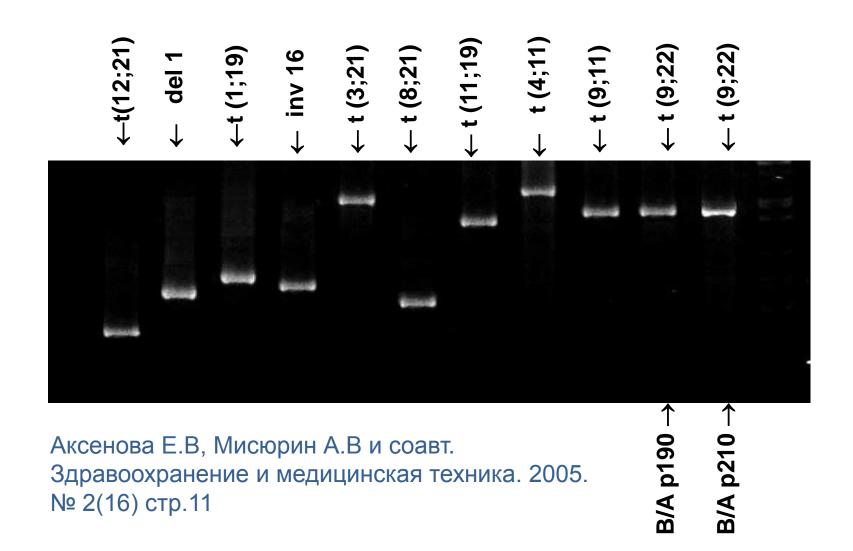
Marseille, France


We sought to understand the genesis of the t(9;22) by characterizing genomic breakpoints in chronic myeloid leukemia (CML) and BCR-ABL-positive acute lymphoblastic leukemia (ALL). BCR-ABL breakpoints were identified in p190 ALL (n=25), p210 ALL (n=25) and p210 CML (n=32); reciprocal breakpoints were identified in 54 cases. No evidence for significant clustering and no association with sequence motifs was found except for a breakpoint deficit in repeat regions within BCB for p210 cases. Comparison of reciprocal breakpoints, however, showed differences in the patterns of deletion/insertions between p190 and p210. To explore the possibility that recombinase-activating gene (RAG) activity might be involved in ALL, we performed extra-chromosomal recombination assays for cases with breakpoints close to potential cryptic recombination signal sequence (cRSS) sites. Of 13 ALL cases tested, 1/10 with p190 and 1/3 with p210 precisely recapitulated the forward BCR-ABL breakpoint and 1/10 with p1 90 precisely recapitulated the reciprocal breakpoint. In contrast, neither of the p210 CMLs tested showed functional cRSSs. Thus, although the t(9;22) does not arise from aberrant variable (V), joining (J) and diversity (D) (V(D)J) recombination, our data suggest that in a subset of ALL cases RAG might create one of the initiating double-strand breaks.

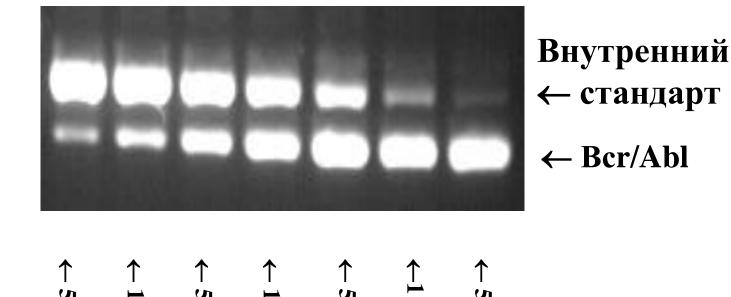
Leukemia (2010) 24, 1742-1750; doi:10.1038/leu.2010.174;

published online 12 August 2010

Keywords: BCR-ABL; breakpoints; RAG







| BCR     | GGATAAAGCTTTGCAGGAAGGATGTGGCTGATGAGACCATCAACCTCAGTCCTGCCAAGGGTGAGGCGGCCCAGAGAGGGT |
|---------|-----------------------------------------------------------------------------------|
| BCR ABL | GGATAAAGCTTTGCAGGAAGGATGTGGCTGATGAGACCATGCCCAGTTAGTGATTTTTAAATTGTAGTTCCTTAAATGAG  |
| ABL     | CCCAATGTTCTAGGGTTACAGGCATGAGCTACTGTCCTGGCCCAGTTAGTGATTTTTAAATTGTAGTTCCTTAAATGAG   |
| ABL BCR | CCCAATGTTCTAGGGTTAC                                                               |
| 111111  |                                                                                   |

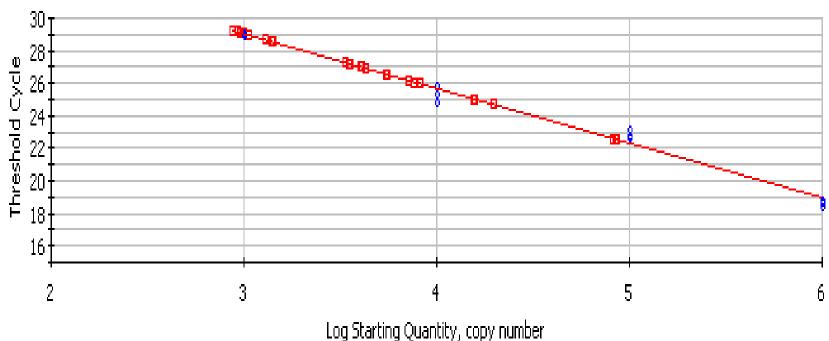
ABTTETTOTAANBETCTOTABEACTBEGACTGGGGBATACGCACAGTGCEACAAAACCTACAGAGACCTFEACAAAAAC

# Качественный анализ: ОТ ПЦР-диагностика химерных онкогенов



# Количественное определение экспрессии BCR/ABL методом конкурентной ПЦР




# Количественный анализ: ПЦР в реальном времени

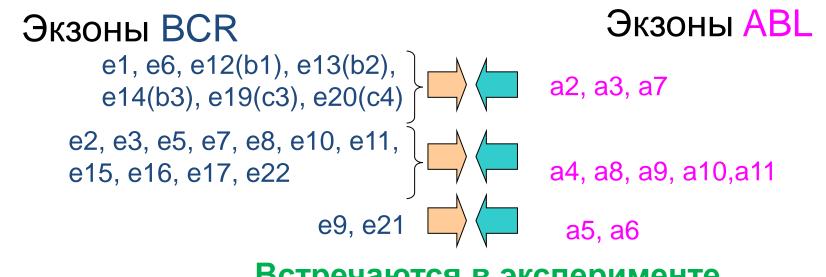
Correlation Coefficient: 0.994 Slope: -3.360 Intercept: 39.132 Y = -3.360 X + 39.132 J


PCR Efficiency: 98.4 %

Unknowns

Standards

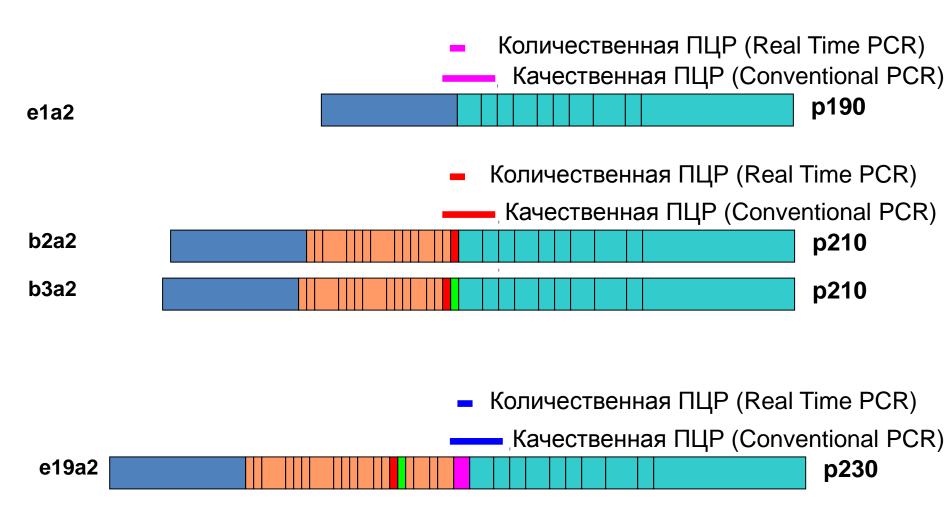



### Варианты химерного онкогена BCR/ABL

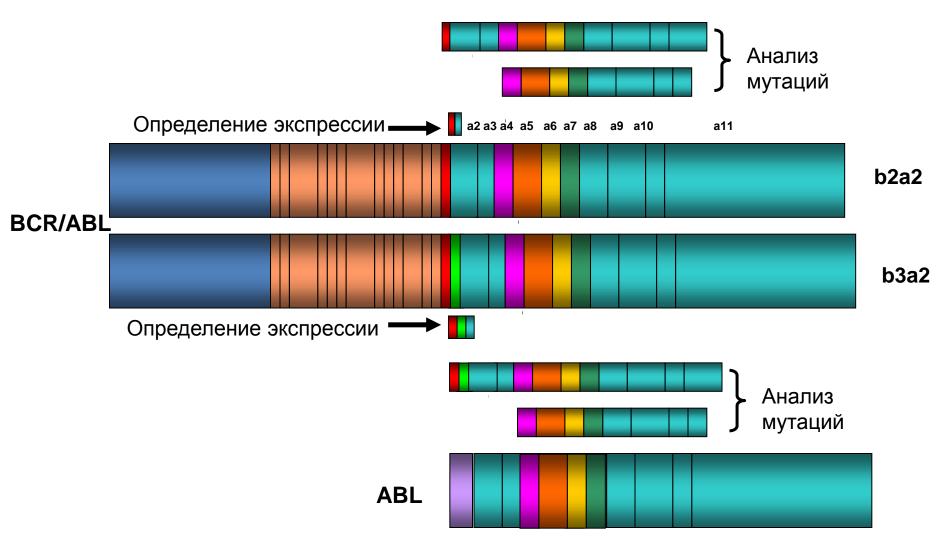


А.В.Мисюрин, Е.В.Аксенова и соавт., Гематология и трансфузиология. – 2007.- №2.- С.35-40

### Возможные варианты транскрипции химерного онкогена BCR/ABL


### Могут слиться без нарушения рамки считывания




### Встречаются в эксперименте

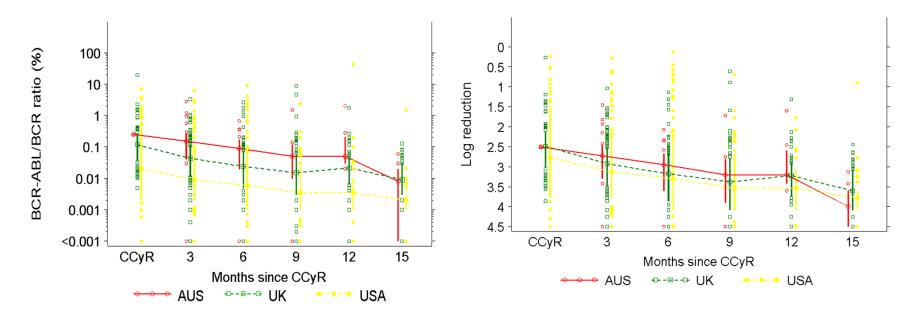
$$\begin{array}{c} \text{b2a2, b3a2} \\ \text{b2a3, b3a3} \end{array} \} \text{M-bcr} \quad \begin{array}{c} \text{e1a2} \\ \text{e1a3} \end{array} \} \text{m-bcr} \quad \text{e19a2} \quad \Big\} \mu\text{-bcr} \quad \text{e6a2}$$

# Качественная и количественная ПЦР при анализе экспрессии гена BCR/ABL: разница в длине фрагментов и охвате экзонов



## Анализ мутаций гена BCR/ABL




А.В.Мисюрин, Е.В.Аксенова и соавт., Гематология и трансфузиология. – 2007.- №2.- С.35-40

# Исследование IRIS: нормализация результатов на основе 30 общих образцов крови больных ХМЛ

#### ORIGINAL ARTICLE

### Frequency of Major Molecular Responses to Imatinib or Interferon Alfa plus Cytarabine in Newly Diagnosed Chronic Myeloid Leukemia

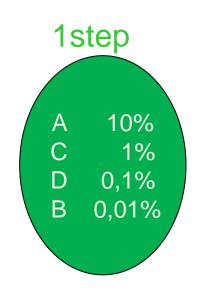
Tim P. Hughes, M.D., Jaspal Kaeda, Ph.D., Susan Branford, Zbigniew Rudzki, Ph.D., Andreas Hochhaus, M.D., Martee L. Hensley, M.D., Insa Gathmann, M.Sc., Ann E. Bolton, B.Sc.N., Iris C. van Hoomissen, B.Sc.N., John M. Goldman, D.M., and Jerald P. Radich, M.D. for the International Randomised Study of Interferon versus STI571 (IRIS) Study Group N Engl J Med 2003; 349:1423-1432 | October 9, 2003

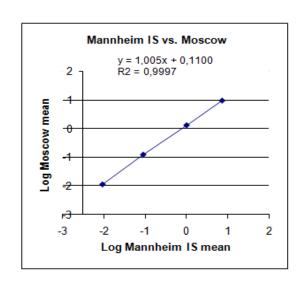


До нормализации

После нормализации

# Международная шкала (International Scale) (Bethesda 2005, Blood 2006)

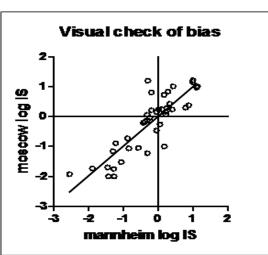

BCR-ABL/контрольный ген х100 %


Базальный уровень= 100%, MMR = 0,1%

Фактор конверсии (conversion factor, CF) = 0,1%/MMR%

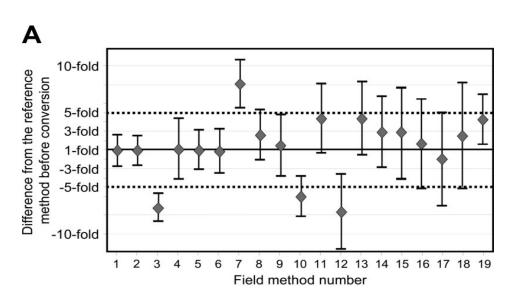
Необходимость обмена образцами

#### Расчет фактора конверсии Москва относительно Mannheim

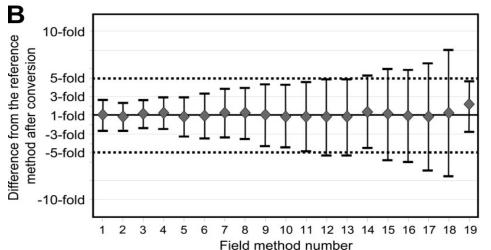





R2= 0,9997 R2>0,98


Предварительный CF= 0,7852

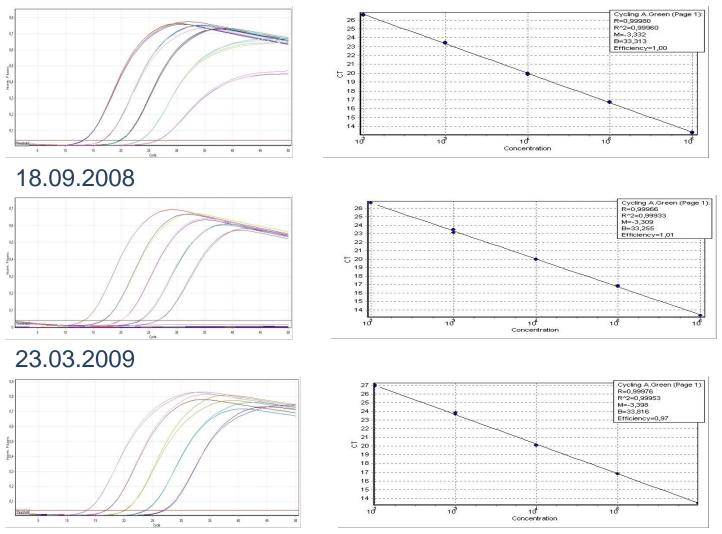





CF = 0,9631

# Различия между результатами разных лабораторий до и после конверсии

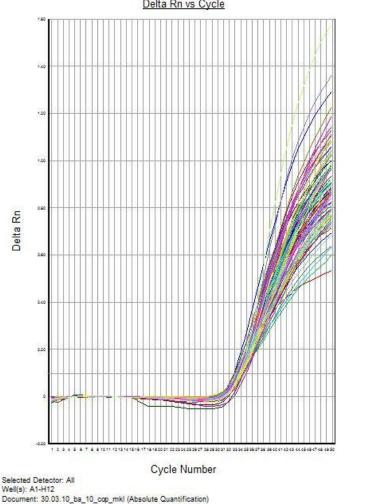



До конверсии – различия в средних от -7,7 раз до +8,1 раз



После конверсии – различия в средних ±1,2 раза (17 из 19) Разброс варьирует

M Muller et al. Leukemia, 2009


# Стабильность контрольных плазмид BCR/ABL+ABL (*Онкоскрин™ , ООО «ГеноТехнология»* (Москва, Россия) 27.03.2008



Аксенова Е.В., Мисюрин А.В. и соавт. Клиническая онкогематология, 2010, №2, стр.160-165

# Воспроизводимая чувствительность тест-системы для количественного анализа экспрессии BCR/ABL





Плазмида BCR/ABL+ABL 10 копий/1 µI

96 повторов

(прибор АВ 7500)

CT Mean = 33,95

CT SD = 0.63

CV % = 1.86

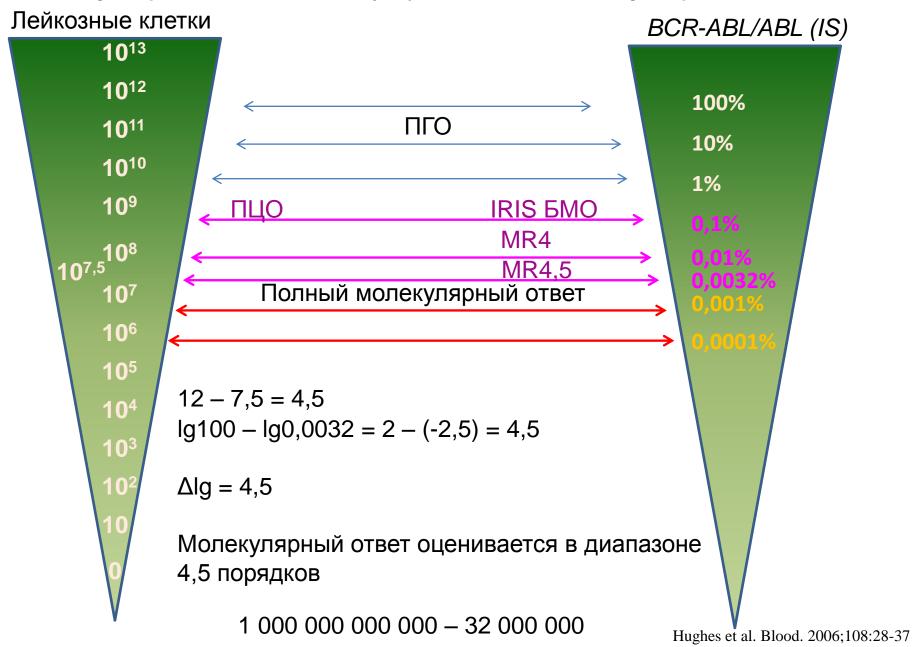
(Рекомендации ЕАС:

CV % < 5%)

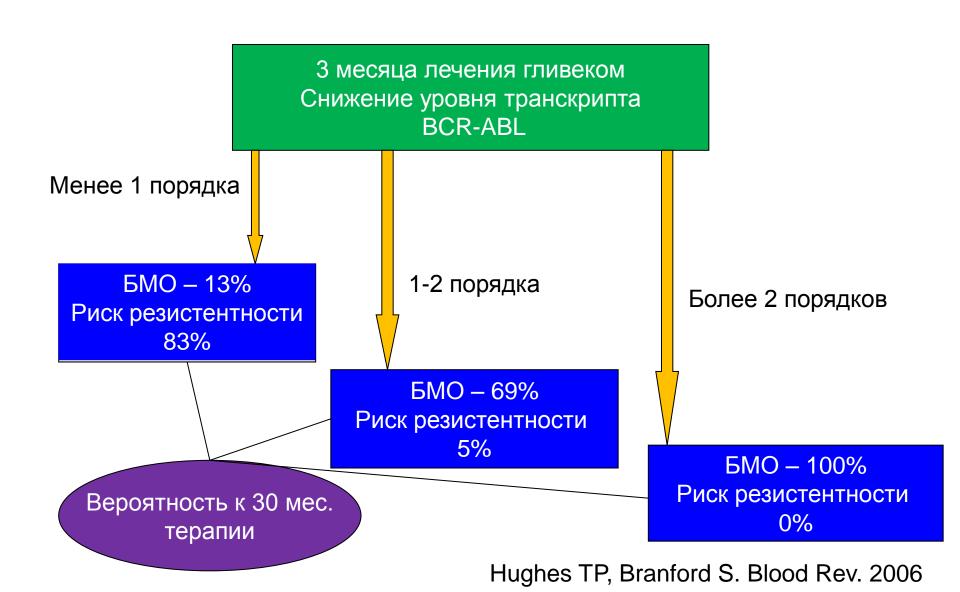
1,86 % < 5 %

Аксенова Е.В., Мисюрин А.В. И соавт. Клиническая онкогематология, 2010, №2, стр.160-165

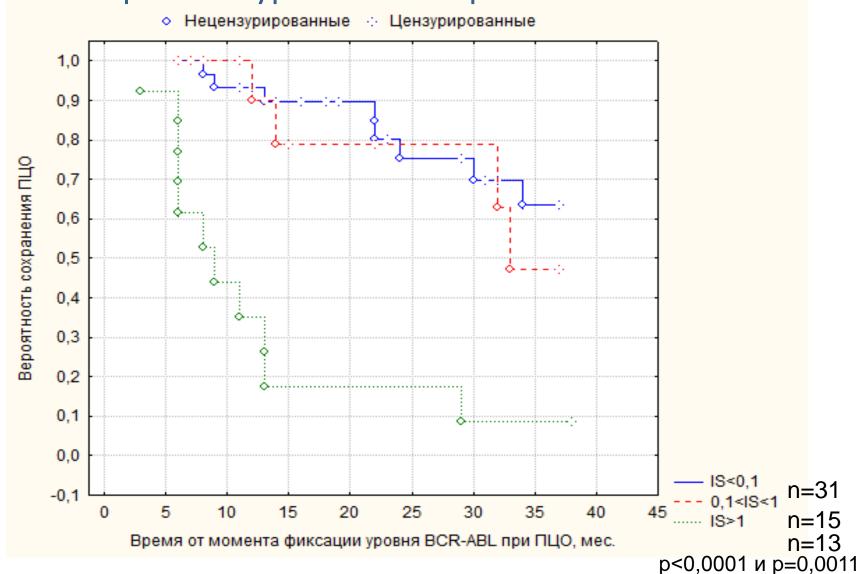
## Молекулярный ответ


Полный (ПМО)

мРНК ВСR-ABL не определяется методом количественной ПЦР в реальном времени и/или методом ПЦР с вложенными праймерами в двух последовательно взятых образцах крови адекватного качества (чувствительность более 10<sup>4</sup>)

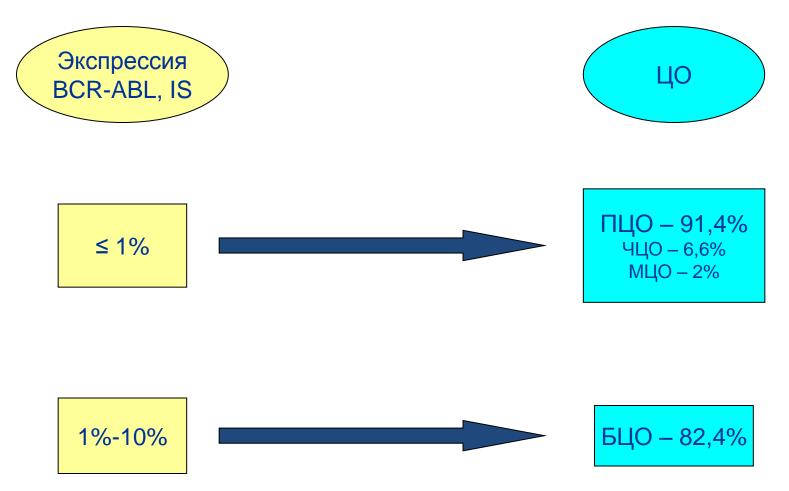

Большой (БМО)

Отношение BCR-ABL к ABL (или другим конститутивным генам) 0,1 % и менее по международной шкале


### Международная шкала (IS) оценки молекулярного ответа

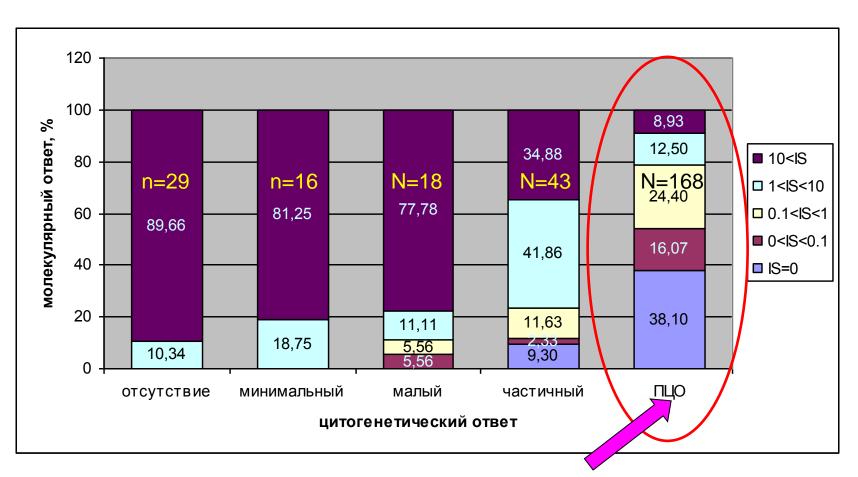


### IRIS: предсказательная ценность МО




# Вероятность сохранения ПЦО у больных ХФ ХМЛ с разным уровнем экспрессии *BCR-ABL*

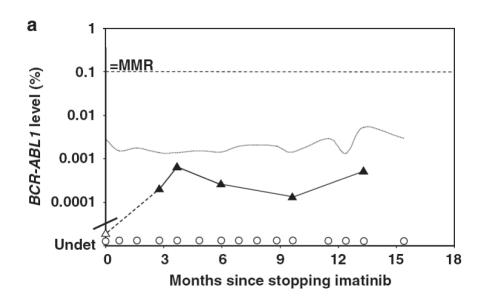


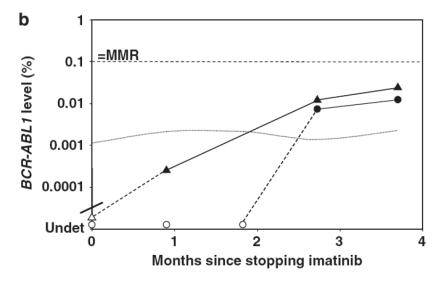

Е.В.Аксенова, А.В. Мисюрин и соавт. Клиническая онкогематология, 2010, №2, стр.151-159

## Сопоставление экспрессии BCR-ABL и цитогенетического ответа при XMЛ



Е.В.Аксенова, А.В. Мисюрин и соавт. Клиническая онкогематология, 2010, №2, стр.151-159


### Сопоставление ЦО и МО




### Группа пациентов с ПЦО неоднородна по уровню экспрессии BCR-ABL

Е.В.Аксенова, А.В. Мисюрин и соавт. Клиническая онкогематология, 2010, №2, стр.151-159

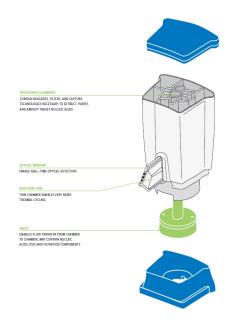
# Использование ДНК для мониторинга XMЛ: новое хорошо забытое старое





Стоп-иматиниб: 2 года ПМО, но сохранение ДНК-позитивности

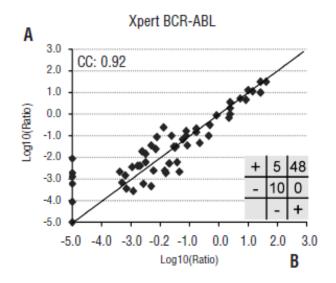
Стоп-иматиниб: быстрое развитие ДНК-, а затем и РНК-позитивности


Ross, et al. Leukemia. 2010;24(10):1719-24

Sobrinho-Simoes et al. Blood. 2010;116(8):1329-35

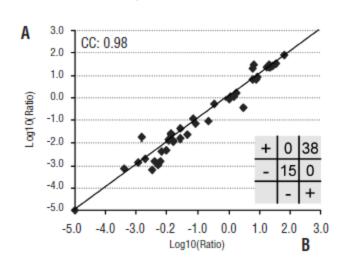
### Система GeneExpert (Cepheid)




The cornerstone of the GeneXpert® System is Cepheid's patented, self-contained, single-use cartridges.



Jobbagy *et al* .JMD April 2007, Vol. 9, No. 2 J-M. Cayuela *et al*. Haematologica 2011; 96(5)


### GeneExpert vs. "manual" RQ PCR BCR-ABL





#### 6 часов





### GeneExpert:

- 1. Экономически оправдан при <300 образцов в год
- 2. СF необходимо определять для каждой новой партии картриждей
- 3. Сравним по чувствительности и воспроизводимости с RQ PCR

#### Manual Α 3.0 CC: 0.97 2.0 1.0 Log10 (Ratio) 0.0 -1.0 -2.0 -3.0 -4.0-4.0 -3.0 -0.2 -1.0 0.0 Log10(Ratio) В

J-M. Cayuela et al. Haematologica 2011; 96(5)

Несколько исследований больных ХМЛ в ХФ, получавших терапию иматинибом (ИТК1), показали необходимость достижения быстрого и глубокого молекулярного и цитогенетического ответов для наилучших долгосрочных результатов лечения:

— Hammersmith (imatinib): больные, с уровнем BCR-ABL <10% в 3 месяца и ~1% в 6 месяцев имели существенно лучшую 8-летнюю ВБП, бессобытийную и общую выживаемость

Marin D, et al. J Clin Oncol2012;30:232-238

— CML Study IV (imatinib): больные, с уровнем BCR-ABL ≤10% and ≥ЧЦО в 3 и ≤1% и ПЦО в 6 месяцев имели лучшую 5-летнюю ВБП и общую выживаемость

Hanfstein B, et al. Leukemia2012;26:2096-2102

— SPIRIT 2 (dasatinib): больные, получавшие дазатиниб в качестве 1 линии терапии, в случае достижения уровня экспрессии BCR-ABL ≤10% в 3 месяца терапии имели наилучшие показатели ПЦО, БМО и МО4.5 к 2 годам наблюдения



2010 116: 3758-3765

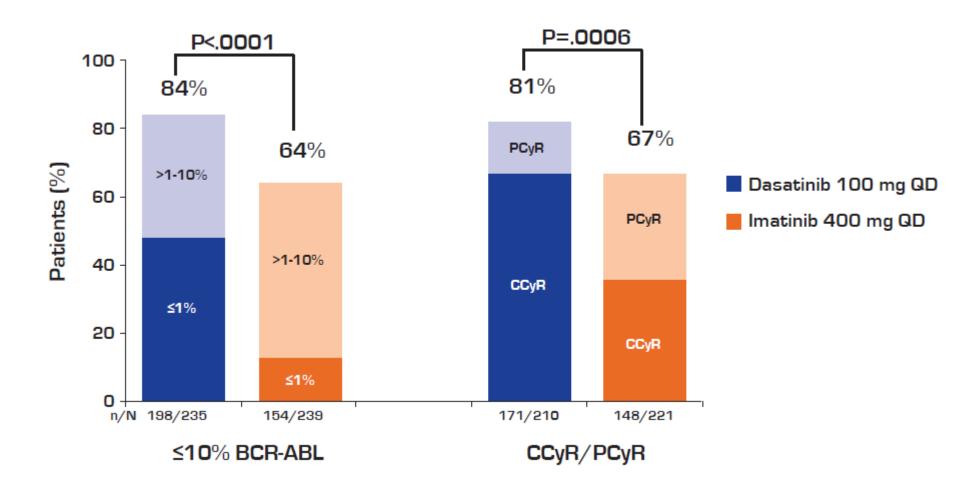
Prepublished online August 2, 2010; doi:10.1182/blood-2010-03-273979

# Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS)

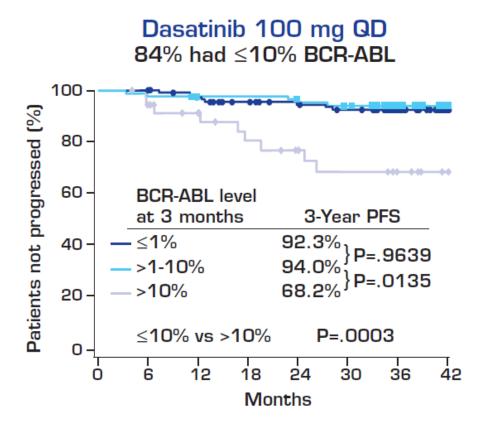
Timothy P. Hughes, Andreas Hochhaus, Susan Branford, Martin C. Müller, Jaspal S. Kaeda, Letizia Foroni, Brian J. Druker, François Guilhot, Richard A. Larson, Stephen G. O'Brien, Marc S. Rudoltz, Manisha Mone, Elisabeth Wehrle, Vijay Modur, John M. Goldman, Jerald P. Radich and on behalf of the IRIS investigators

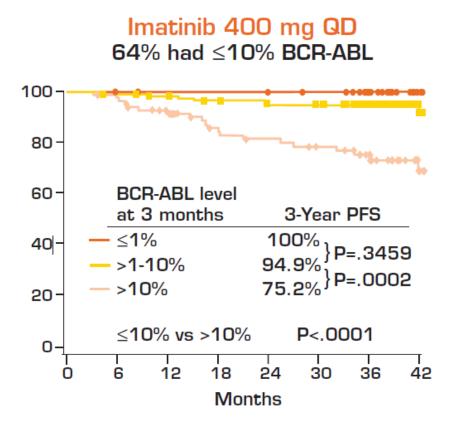
Table 3. Long-term outcomes (estimated rates at 7 years with 95% Cls) by molecular response level at 6, 12, and 18 months (landmark analyses)

|                         |                | BCR-            | ABL ratio (IS) categ | ories          |               |                            |                                   |
|-------------------------|----------------|-----------------|----------------------|----------------|---------------|----------------------------|-----------------------------------|
|                         | MMR            |                 | No MMR               |                | Total no MMR  | Lo                         | g-rank P                          |
| Landmark, %<br>(95% CI) | ≤ 0.1%         | > 0.1 to ≤ 1.0% | > 1.0 to ≤ 10%       | > 10%          | > 0.1%        | Comparing<br>MMR vs no MMR | Comparing<br>MMR vs > 0.1 to ≤ 1% |
| 6 mo                    | n = 86         | n = 89          | n = 44               | n = 39         | n = 172       |                            |                                   |
| EFS rate, %             | 85.1 (76; 94)  | 92.8 (87; 98)   | 85.2 (74; 96)        | 56.3 (39; 74)  | 83.5 (78; 89) | ns                         | ns                                |
| Without AP/BC           | 96.2 (92; 100) | 98.4 (95; 100)  | 95.2 (89; 100)       | 75.8 (60; 92)  | 93 (89; 97)   | ns                         | ns                                |
| OS rate                 | 90.3 (83; 97)  | 93.0 (88; 98)   | 100 (100; 100)       | 68.2 (53; 83)  | 89 (85; 94)   | ns                         | ns                                |
| 12 mo                   | n = 153        | n = 90          | n = 36               | n = 25         | n = 151       |                            |                                   |
| EFS rate                | 91 (85; 97)    | 91.7 (86; 98)   | 64.1 (48; 80)        | 52.5 (31; 74)  | 79.4 (73; 86) | .001†                      | ns‡                               |
| Without AP/BC           | 99 (97; 100)*  | 95.5 (91; 100)  | 83.4 (70; 97)        | 76 (57; 95)    | 89.9 (85; 95) | .0004†                     | .048‡                             |
| OS rate                 | 92.5 (88; 97)  | 96.7 (93; 100)  | 85.7 (74; 97)        | 65.5 (46; 85)  | 89.2 (84; 94) | ns                         | ns                                |
| 18 mo                   | n = 164        | n = 48          | n = 25               | n = 16         | n = 89        |                            |                                   |
| EFS rate                | 94.9 (91; 99)  | 86.4 (76; 97)   | 62.3 (43; 82)        | 58.0 (30; 87)  | 75.3 (66; 85) | < .001†                    | .014‡                             |
| Without AP/BC           | 99.1 (98; 100) | 95.7 (90; 100)  | 82.6 (67; 98)        | 81.5 (58; 100) | 90.1 (84; 97) | < .001†                    | .054                              |
| OS rate                 | 94.9 (91; 99)  | 95.7 (90; 100)  | 84.0 (70; 98)        | 80.8 (61; 100) | 89.8 (84; 96) | ns                         | ns                                |

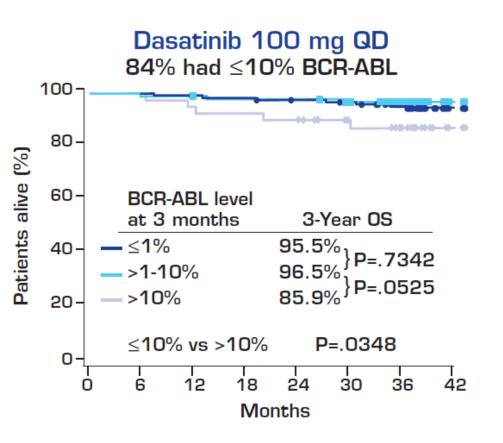

### Выживаемость без прогрессии (PFS) в зависимости от молекулярного ответа

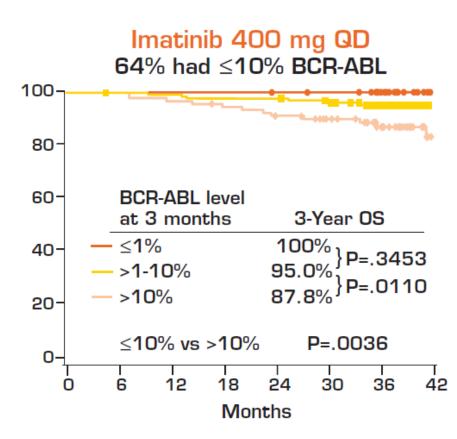
|   | BCR-ABL <sup>IS</sup> at 3 months                             | Five-year PFS     | <i>p</i> -va | lue             |
|---|---------------------------------------------------------------|-------------------|--------------|-----------------|
| / | ≤1% (n = 218)                                                 | 96%               | NS           | _               |
|   | >1%-10% (n = 281)                                             | 92%               | INO          | 0.037           |
|   | >10% (n = 189)                                                | 87%               | _            | 0.037           |
|   |                                                               |                   |              |                 |
|   | BCR-ABLIS at 6 months                                         | Five-year PFS     | <i>p</i> -va | lue             |
|   | <b>BCR-ABL</b> <sup>IS</sup> <b>at 6 months</b> ≤1% (n = 498) | Five-year PFS 96% |              | lue<br>_        |
|   |                                                               |                   | <i>p</i> -va | nlue<br>—<br>NS |


### Выживаемость без прогрессии (PFS) в зависимости от цитогенетического ответа

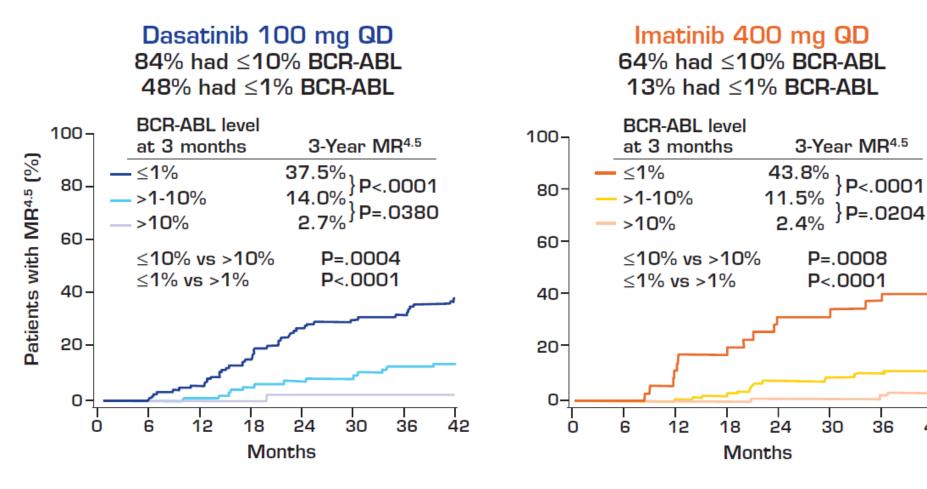

| Ph+ at 3 months                     | Five-year PFS     | <i>p</i> -value       |
|-------------------------------------|-------------------|-----------------------|
| ≤35% (n = 336)                      | 94%               | 0.016                 |
| >35% (n = 122)                      | 87%               | 0.010                 |
|                                     |                   |                       |
| Ph+ at 6 months                     | Five-year PFS     | <i>p</i> -value       |
| <b>Ph+ at 6 months</b> 0% (n = 319) | Five-year PFS 97% | <i>p</i> -value 0.014 |

### **Responses at 3 Months**





#### PFS According to BCR-ABL Level at 3 Months

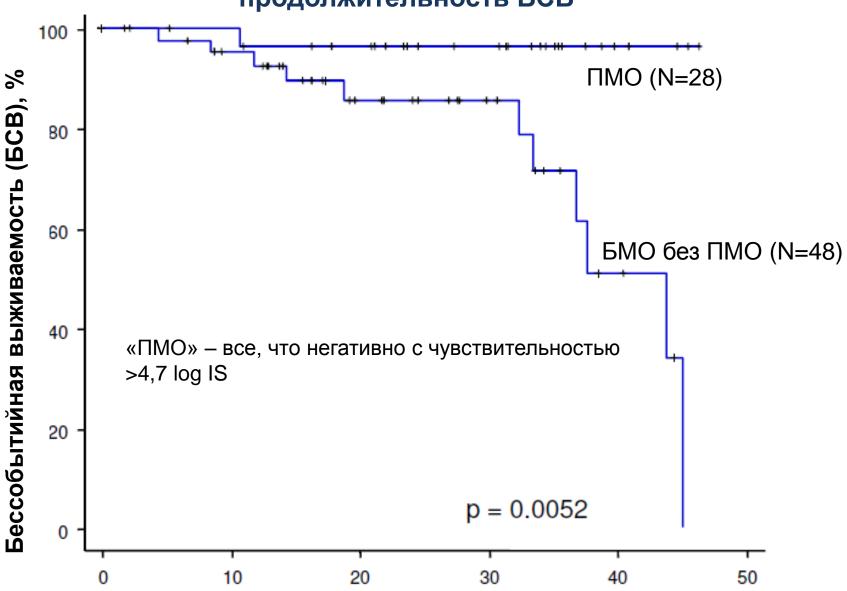





#### OS According to BCR-ABL Level at 3 Months






#### MR4.5 According to BCR-ABL Level at 3 Months



36

42

# Полный молекулярный ответ (ПМО) увеличивает продолжительность БСВ



Press et al, Clin Cancer Res 13, 6136 (2007)

В качестве препаратов первой линии для лечения ХМЛ в настоящее время применяют не только иматиниб (ИТК1), но и дазатиниб и нилотиниб (ИТК2)

В связи с этим возросла необходимость раннего выявления больных ХМЛ, плохо отвечающих на терапию иматинибом, для своевременного переключения на ИТК2

# Определение ответов на терапию ИТК в первой линии ХМЛ: Рекомендации ESMO 2012

|               | Оптимальный                   | Настороженность | Неудача                               |
|---------------|-------------------------------|-----------------|---------------------------------------|
| 3 мес.        | Ph+ ≤95% или<br>BCR/ABL < 10% |                 | Ph+ >95% или<br>BCR/ABL >10%          |
| 6 мес.        | Ph+ ≤35% или<br>BCR/ABL <10%  | Ph+ 35%-65%     | Ph+>65% или<br>BCR-ABL >10%           |
| 12 мес.       | Ph+ 0% или<br>BCR/ABL ≤1%     |                 | Ph+ ≥1% или<br>BCR/ABL >1%            |
| В любое время |                               | Потеря БМО      | Потеря ПГО,<br>Потеря ПЦО,<br>мутации |

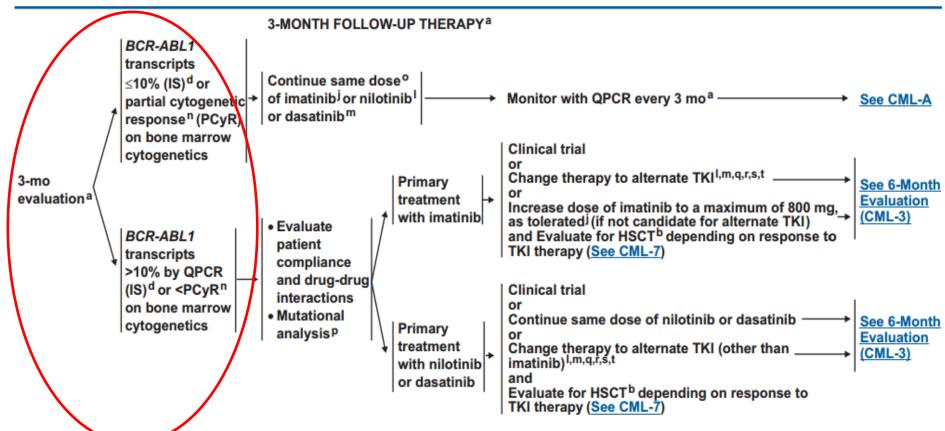
Baccarani M, et al/ Annals of Oncology 23 (Supplement 7): vii72-vii77, 2012



## European LeukemiaNet Recommendations for the Management of Chronic Myeloid Leukemia (CML)

Baccarani et al, Blood 2013;122:872-884

Response definitions for any TKI first line, and 2nd line in case of intolerance, all patients (CP, AP, and BC)


| Time                        | Optimal response                               | Warning                                   | Failure                                                                         |
|-----------------------------|------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| Baseline                    |                                                | High risk<br>Major route CCA/Ph+          |                                                                                 |
| 3 mos.                      | BCR-ABL <sup>IS</sup> ≤10%*<br>Ph+ ≤35% (PCyR) | BCR-ABL <sup>IS</sup> >10%*<br>Ph+ 36-95% | No CHR*<br>Ph+ >95%                                                             |
| 6 mos.                      | BCR-ABL <sup>IS</sup> <1%*<br>Ph+ 0% (CCyR)    | BCR-ABL <sup>IS</sup> 1-10%*<br>Ph+ 1-35% | BCR-ABL <sup>IS</sup> >10%*<br>Ph+ >35%                                         |
| 12 mos.                     | BCR-ABL <sup>IS</sup> ≤0.1%* (MMR)             | BCR-ABLIS 0.1-1%*                         | BCR-ABL <sup>IS</sup> >1%*<br>Ph+ >0%                                           |
| Then,<br>and at<br>any time | MMR or better                                  | CCA/Ph- (-7, or 7q-)                      | Loss of CHR<br>Loss of CCyR<br>Loss of MMR, confirmed**<br>Mutations<br>CCA/Ph+ |

#### Рекомендации NCCN 2014



#### NCCN Guidelines Version 1.2014 Chronic Myelogenous Leukemia

NCCN Guidelines Index
CML Table of Contents
Discussion



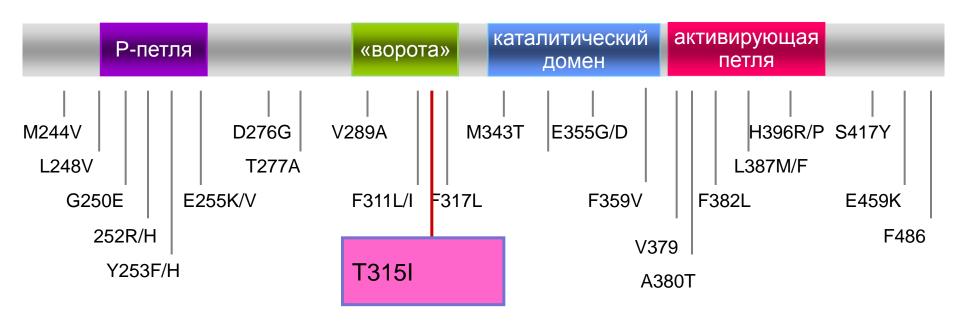
http://www.nccn.org/professionals/physician\_gls/pdf/cml.pdf

По результатам международного исследования IRIS, только 60% больных, у которых терапия иматинибом была начата в ранней хронической фазе (РХФ), оставались на этой терапии через 7 лет после ее начала

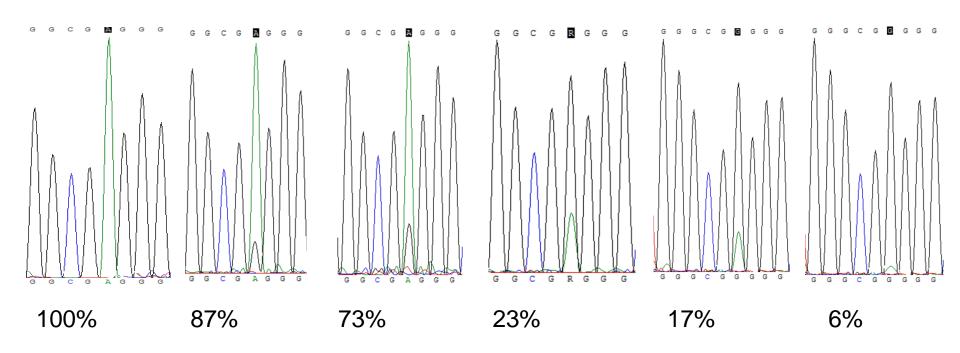
### Причины резистентности

#### BCR/ABL - зависимые причины резистентности

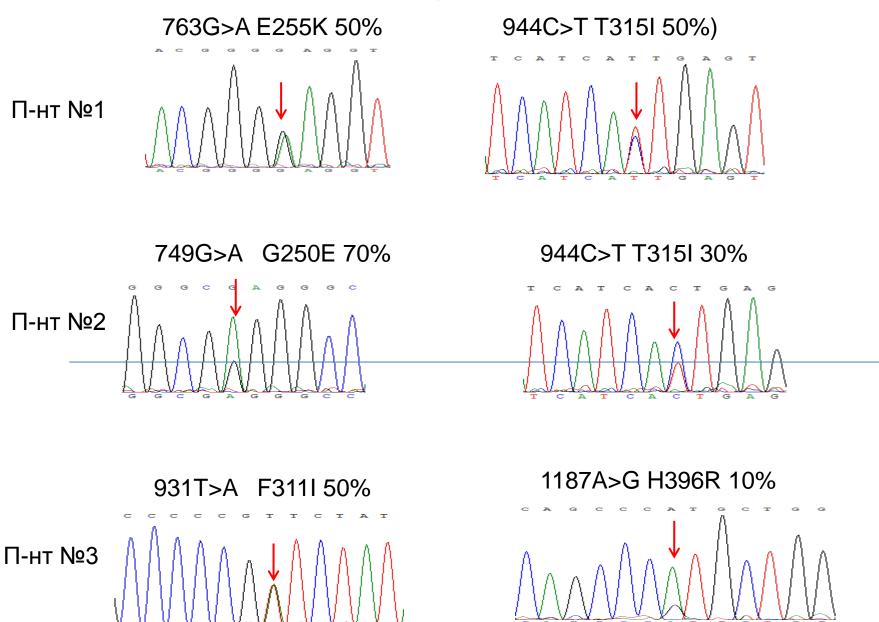
• Амплификация или гиперэкспрессия гена BCR/ABL


50 - 60%

- Мутации гена BCR/ABL
  - точечные мутации
  - делеции и инсерции


40 - 50%

BCR/ABL-независимые причины резистентности


# 4 основных домена, содержащие мутации BCR/ABL



# Соматическая мутация G749A гена BCR/ABL при терапии XMЛ дазатинибом



#### Двойные мутации BCR-ABL



#### 278 мутаций гена BCR/ABL (38 видов)

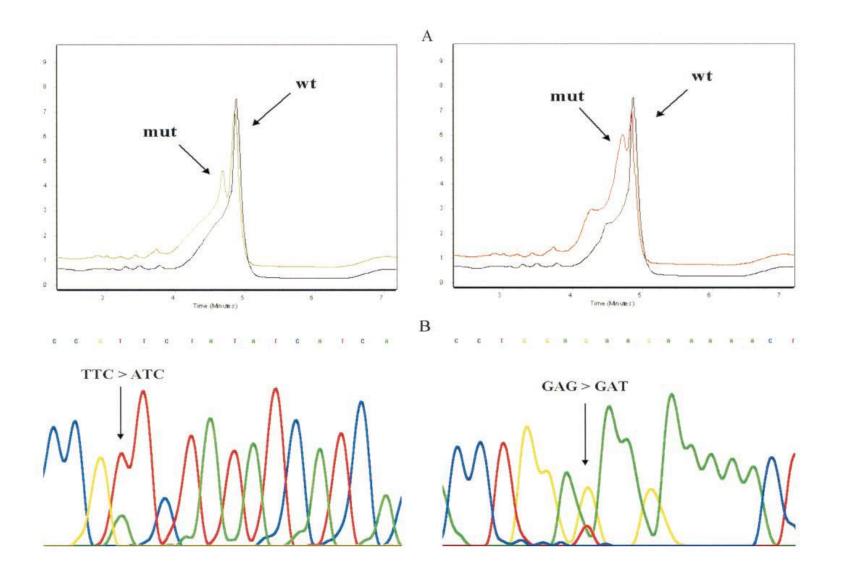
| n= | %                                              |
|----|------------------------------------------------|
| 35 | 12,6                                           |
| 35 | 12,6                                           |
| 18 | 6,4                                            |
| 22 | 7,9                                            |
| 21 | 7,5                                            |
| 18 | 6,4                                            |
| 16 | 5,7                                            |
| 18 | 6,4                                            |
| 11 | 3,9                                            |
| 11 | 3,9                                            |
| 11 | 3,9                                            |
| 5  | 2,3                                            |
| 8  | 2,8                                            |
| 5  | 1,8                                            |
| 4  | 1,4                                            |
| 7  | 2,5                                            |
| 3  | 1,07                                           |
| 2  | 0,7                                            |
| 2  | 0,7                                            |
|    | 35 35 18 22 21 18 16 18 11 11 11 5 8 5 4 7 3 2 |

| мутации      | n= | %   |
|--------------|----|-----|
| E459K        | 1  | 0,3 |
| F486S        | 1  | 0,3 |
| L387M        | 2  | 0,7 |
| Y312C        | 1  | 0,3 |
| E459A        | 1  | 0,3 |
| E459R        | 1  | 0,3 |
| K247R        | 2  | 0,7 |
| Ins 98-72 bp | 1  | 0,3 |
| P441L        | 1  | 0,3 |
| Q252M        | 1  | 0,3 |
| Q491L        | 1  | 0,3 |
| T345I        | 1  | 0,3 |
| V299A        | 2  | 0,7 |
| E255D        | 3  | 1,1 |
| del742       | 1  | 0,3 |
| del ex7      | 2  | 0,9 |
| E292V        | 1  | 0,3 |
| E334G        | 1  | 0,3 |
| E355A        | 1  | 0,3 |

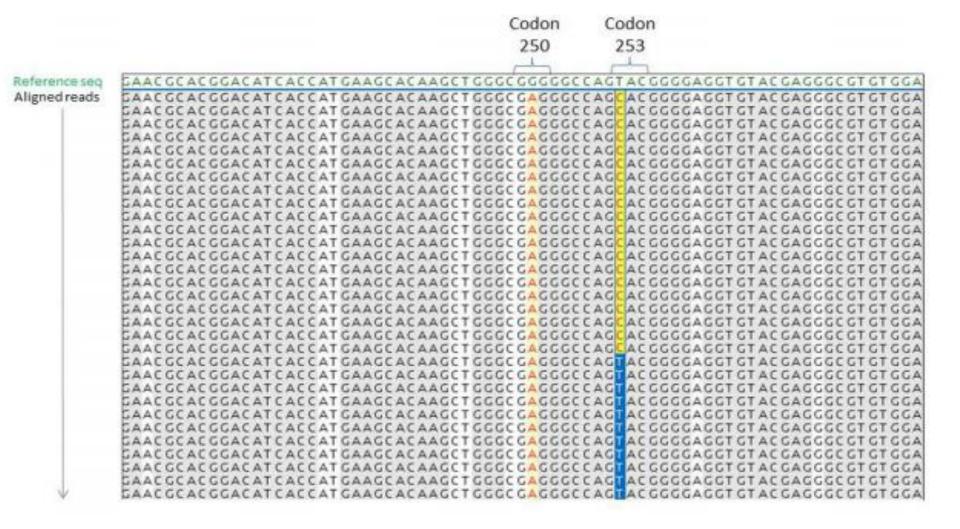
A. Misyurin, E. Misyurina, et al. ASH 2011 Abstract ID#: 40825

### Двойные мутации гена BCR/ABL

| Nº | 1 мутация | зона                 | зона 2 мутация |          |
|----|-----------|----------------------|----------------|----------|
| 1  | T315I     | В                    | E255V          | P-loop   |
| 2  | E255V     | P-loop               | F359V          | A- loop  |
| 3  | E255V     | P-loop               | Q252H          | P-loop   |
| 4  | E255V     | P-loop               | Q252H          | P-loop   |
| 5  | T315I     | В                    | L248V          | P-loop   |
| 6  | M351I     | C-domain             | S348L          | C-domain |
| 7  | M244V     | P-loop               | K247R          | P-loop   |
| 8  | M244V     | P-loop               | G250E          | P-loop   |
| 9  | M244V     | P-loop               | G250E          | P-loop   |
| 10 | M244V     | P-loop               | F317L          | В        |
| 11 | M244V     | P-loop               | G250E          | P-loop   |
| 12 | M244V     | P-loop               | T315I          | В        |
| 13 | M244V     | P-loop               | M351T          | C-domain |
| 14 | F359V     | A- loop <b>H396R</b> |                | A-loop   |
| 15 | G250E     | P-loop               | E255K          | P-loop   |
| 16 | S348L     | C-domain             | M351T          | C-domain |


A. Misyurin, E. Misyurina, et al. ASH 2011 Abstract ID#: 40825

# Выбор терапии ИТК-2 при мутациях гена BCR/ABL

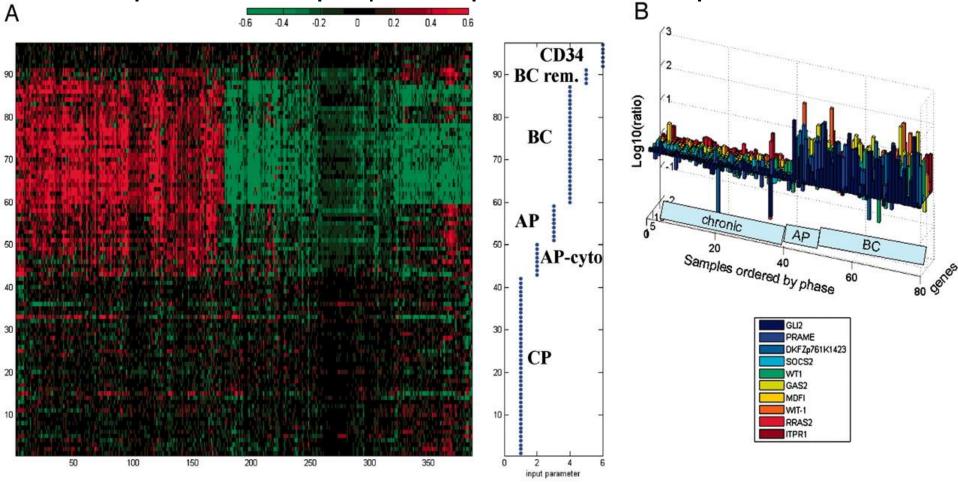

число больных n=262, мутаций выявлено 278

| мутации | n= | %    |       | Выбор терапии                                         |
|---------|----|------|-------|-------------------------------------------------------|
| T315I   | 35 | 12,6 | 12,6% | ИТК неэффективны (аллоТГСК, клинические исследования) |
| E255K   | 16 | 5,7  |       |                                                       |
| E255V   | 11 | 3,9  |       | Резистентны к Нилотинибу                              |
| F359V   | 18 | 6,5  | 25,1% |                                                       |
| F359C   | 7  | 2,5  |       |                                                       |
| Y253H   | 18 | 6,5  |       |                                                       |
| F317L   | 22 | 7,9  |       | Резистентны к Дазатинибу                              |
| F317I   | 3  | 1,0  | 8,9%  |                                                       |

#### Определение мутаций BCR-ABL при помощи DHPLC



#### Определение мутаций BCR-ABL методом глубокого секвенирования




#### Определение мутаций BCR-ABL методом глубокого секвенирования

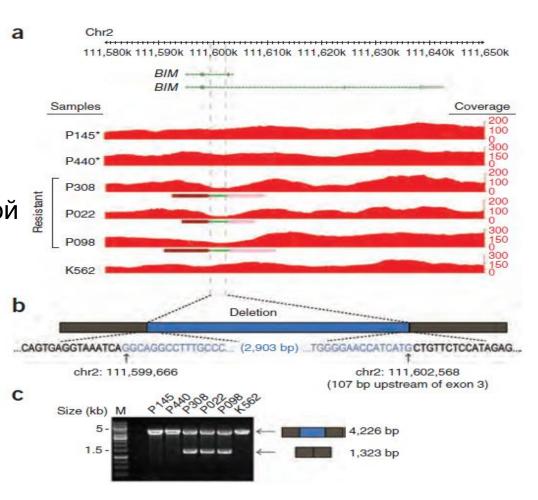
Table 3. Comparison between mutations detected by SS and mutations detected by UDS and estimated clonal composition of the samples harboring multiple mutations as assessed by UDS >1%

|          |            |     |      |                             | 7 170                                                       | 1275                                                                                                          |                                                                                 |
|----------|------------|-----|------|-----------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Code     | Date       | ткі | Line | Mutations by SS             | Mutations by UDS*                                           | Estimated mutated populations by UDS†                                                                         | Disease status and response                                                     |
| CP-01-01 | 2/29/2012  | DAS | 1    | H396R (~50)<br>F317L (~30)  | H896R (55.05), F317L (28.23)                                | H396R (43.99), F317L (17.17),<br>H396R+F317L (11.06)                                                          | Complete cytogenetic response<br>but no molecular response<br>after 6 mo on DAS |
| CP-01-02 | 5/2/2012   | DAS | 2    | F317L (~70),<br>H396R (~20) | F317L (63.07), H396R (15.74),<br>T315l (5.42)               | F3(7L (55.47),H396R (7.60),<br>H396R+F317L (7.38), T315l<br>(4.44), H396R+T315l (0.76),<br>F317L+T315l (0.22) | Complete hematologic response, cytogenetic response not assessed                |
| CP-01-03 | 7/7/2012   | NIL | 3    | T315I (~100)                | T315I (99.28)                                               | T315 (99.28)                                                                                                  | Complete hematologic<br>response, no cytogenetic<br>response                    |
| CP-02-01 | 3/4/2008   | IM  | 1    | F359V (~20)                 | F359V (17.33)                                               | F359V (17.33)                                                                                                 | Loss of complete hematologic<br>response after 5 mo on IM                       |
| CP-02-02 | 4/2/2008   | DAS | 2    | T315I (~100)                | T315I (94.80)                                               | T315I (94.80)                                                                                                 | Progression to LBC                                                              |
| CP-03-01 | 3/7/2005   | IM  | 1    | G250E (~100)                | G250E (93.72), F317L (1.78)                                 | G250E (92.20), G250E+F317L<br>(1.52), F317L (0.26)                                                            | Minor cytogenetic response<br>after 12 mo on IM                                 |
| CP-03-02 | 9/14/2005  | DAS | 2    | G250E (~70),<br>F317L (~20) | G250E (74.71), F317L (22.51)                                | G250 (62.00), G250E+F317L<br>(12.71), F317L (9.80)                                                            | Minor cytogenetic response                                                      |
| CP-03-03 | 11/17/2005 | DAS | 2    | G250E (~70),<br>F317L (~30) | G250E (60.73), F317L (27.06)                                | G250E (46.44), G250E+F317L<br>(14.29), F317L (12.77)                                                          | Not available                                                                   |
| CP-03-04 | 2/13/2006  | DAS | 2    | G250E (~50),<br>F317L (~40) | G250E (45.47), F317L (37.49),<br>H295H (4.91), C330C (1.48) | , , , , , , , , , , , , , , , , , , , ,                                                                       | Complete hematologic response, no cytogenetic response                          |

Анализ экспрессии 25000 генов в хронической фазе, фазе акселерации и при бластном кризе ХМЛ



Radich, Jerald P. et al. (2006) Proc. Natl. Acad. Sci. USA 103, 2794-2799


#### BCR-ABL-независимая резистентность

- Связывание иматиниба с белками плазмы: кислый альфа-1 гликопротеин A.Hochhaus, 2006
- Повышение/снижение активности трансмембранных транспортеров: ABCB1, ABCG2, ABCC3, MVP, OCT-1 *A. Quintas-Cardama, 2009*
- Изменение работы генов, контролирующих апоптоз: IAP's, каспазы *K.Livesey, 2009*
- Активация автофагии: ген HMGB1, ядерный фактор NAC1 *K.Livesey, 2009; Y.Zhang, 2012; Y.Yu, 2012*
- Переход опухолевых клеток из суспензионного состояния в прикрепленное мезенхимоподобное (TSP1, TSP1-R, ITGa2B, ITGa5, ITGaV, ITGb1, TGb3, ITGb5, MCAM, PECAM1)
  - A.Dhasarathy, 2010
- Увеличение экспрессии СХСR4 при ХМЛ приводит миграции незрелых опухолевых клеток в строму костного мозга и способствует выживаемости покоящихся стволовых опухолевых клеток

Konopleva, 2008, 2010

# BCR-ABL-независимая резистентность Делеция 2 903 п.н. интрона 2 гена BIM (BCL2L11):

Данный полиморфизм определяет 21% случаев резистентности к иматинибу у представителей Восточной Азии



#### Заключение

- 1. Основным молекулярным маркером ХМЛ по-прежнему остается область слияния генов BCR и ABL.
- 2. Для того, чтобы молекулярная диагностика ХМЛ могла должным образом соответствовать современным высоким стандартам терапии этого заболевания, основанным на использовании ИТК, необходимо, чтобы она предоставляла количественную информацию о поведении опухолевых клеток.
- 3. Молекулярная диагностика ХМЛ должна быть основана на стандартизованных методиках.
- 4. Так как опухолевые клетки являются ускользающей мишенью даже для самых совершенных терапевтических подходов, необходима кропотливая работа по отслеживанию возможных путей избегания опухолью ответа на лечение и вовлечение в диагностический арсенал дополнительных молекулярных маркеров, характеризующих эволюцию опухолевого клона.

### Мисюрин Андрей Витальевич

and@genetechnology.ru

+7 499 530 01 95